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stuugarz Germany 
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Abstract. The magnetic anisotxopy coefficients and constants of sirigleion origin as functions 
of magnetization have been computed and classified. They are valid for a whole class of untrivial 
theories and are thus universal or comnic within this class. The role of the anisatropy coeficieets 
as a finite basis of findons spanning the variation of the constmts with magnetization and, 
hence, with temperatore and applied field is clarified. The ratio of the zero-temperature 
anisotropy constants is of clucial importance for the observed type of magnetization dependence 
of the first anisotropy constant when two basis functions are considered. The m e h d  is directly 
applicable U, the analysis of magnetostriction of single-ion origin and serves to identify a d  
quantify three generic types of variation of misotropy and magnetostriction. It is demonstrated 
that a compensation point As = 0 far the macroscopic magnetostriction comtant of amorphous 
ferromagnets may result from the competition between the lowat and the next-lowest single-ion 
conhibutions even if no lwo-ion contributions are considered. Prospective extknsions of the 
method are given. 

1. Introduction 

There exist two established ways to characterize that part of the free energy of a crystalline 
substance which depends on the orientation of macroscopic magnetization with respect to 
the crystallographic axes. One way is to expand the anisotropy energy in symmetry-dictated 
combinations of powers of direction cosines of magnetization, whereby the description is in 
terms of the set of anisotropy constants [Ki]. Alternatively, one may expand in spherical 
harmonics and this gives rise to the description in terms of the set of anisotropy coefficients 
{t,J 11-31. Both possibilities are of equal group-theoretical value on the phenomenological 
level of description of anisotropy, for the duection cosines are nothing but the reduced 
Descartes components of magnetization and the relationship between both descriptions 
is analogous to a description of a given physical property in Descartes and in spherical 
coordinates, respectively. Experimentally, one measures the anisotropy constants, while 
there is a certain theoretical advantage, even at the phenomenological level, in using the 
anisotropy coefficients which is due to the straightforwardness of the spherical expansion. 
Once the normalization of the spherical harmonics has been chosen, simple transformation 
relations between constants and coefficients and vice versa can be Written down and these 
have been known for quite some time. For fixed experimental conditions, one hardly 
needs to know more. In an adequate thermodynamic description, however, one needs 
to know, beside the angular dependence, the temperature and magnetic field dependences 
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of the anisotropy energy. In the above descriptions, they are carried by the constants 
(K i (T ,  H)] or the coefficients {in(T, H)], respectively. In deducing the temperature and 
field dependences by going to the deeper level of the statistical mechanical description based 
on quantum mechanics, the set of coefficients is certainly the more fundamental one. The 
natural course of action would then be to eventually compute the coefficients as functions of 
temperature and field and to make use of the general, symmetry-based connection between 
constants and coefficients in order to find the constants as well. 

In uniaxial symmetry, the anisotropy free energy FA in the 'constants' representation is 
given by 

Y Millev and M Fiihnle 

FA = C K,, sinzp(e) (1) 

where 8 is the angle between the direction of magnetization and the crystallographic axis 
of uniaxial symmetry. In the 'coefficients' representation FA, which is equivalent to FA so 
far as the angular dependence is concerned, 

p integer 

FA = p . ( J ) B ~ Y ~ ( ~ ) . & V )  (2) 
n eve" 

where B," are the Elliott-Stevens crystal-field parameters [4, 51, Y:(8) are the spherical 
harmonics, and the anisotropy coefficients are defined as the thermal averages of the Stevens 
operators (6,")(T) normalized against their zero-temperature values 11, 3, 61: 

The zero-temperature values p , ( J )  (6:)(0), with J being the angular momentum 
quantum number, and the anisotropy coefficients themselves can be found from the 
information given in [4]. The former are J-dependent products, while the latter turn out to 
be linear combinations of the moments M, (2). One may refer to [&SI for the explicit 
expressions which will not be reproduced here for the sake of brevity. 

2. Specifying the anisotropy coefficients for a class of untrivial theories 

There is a whole class of theories [9] (mean-field theory, random-phase approximation 
to the Green functions approach, Callen's decoupling scheme within the Green functions 
technique, etc [IO, ll]), for which the moments and, hence, the anisotropy coefficients 
can be expressed as explicit functions of the generalized effective field x of Callen and 
Shtrikman with the help of the explicitly known generating function for the moments in this 
class. The intermediate steps in this procedure can be found in 16, 71. The overall effect is 
that one finds 

(4) 
with an explicitly known right-hand side, while, simultaneously, the reduced magnetization 
per magnetic site is given by 

_ -  n - Kn(X) 

m(x) = M*(x) = B,(x) (5) 
where BJ(x)  = Q C O ~ ~ ( Q X )  - b coth(bx) with Q = 1 + b and b = i J  is the Brillouin 
function. The generalized effective field itself is to be found from 

(6) x = In(1 + I/@) 
where Q, is the average number of quasiparticle excitations [9]. 
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A formal solution giving the anisotropy coefficients as functions of magnetization would 

(7) 

be achieved by inverting equation (5) 

x = B;'(m) = x(m) 

and inserting this into equation (4) so that 

(8)  

An explicit solution of the type (8) is furnished by an analytical procedure for a closed- 
form inversion of the Brillouin function; the explicit inverse Brillouin function was found 
for J = 1 and J = 3 (the case with J = 4 being a tivial one) [12,~13]. Unluckily, these 
values of J  without J = f)~support the second moment M2 = @) only and, hence, only 
i*(m(T, H)) can be found explicitly for J = 1 and J = i. 

Quite recently, a very effective parametric solution was given [6,7]. In fact, equations 
(4x5) as they stand represent the parametric solution with the flowing parameter x. 
The whole physical range of change of magnetization for any temperature and field is 
covered uniquely when the generalized effective field x sweeps between zero and infinity. 
This statement has been corroborated for the mean-field theory and for the random-phase 
approximation [6,7]. Here 'uniquely' means in a one to one comispondence and this stems 
from the monoronicity of the generalized effective field with respect to temperature for fixed 
field and with respect to field for fixed temperature. While the property of monotonicity is 
rather general and is-certainly valid~beyond the class of theories considered, it is instructive 
to see it on the example of the mean-field theory. There, ~~ 

i - -  - K . ( B ; ' ( ~ )  =&(m(T , fO) .  

c m + h  x = -  
t 

with suitably reduced tempemture r, field h, and magnetization m, while c is a constant. 
For h = 0, the effective field x decreases monotonically from infinity at T = 0 to zero at 
T = T,. For fixed nonzero h, the same monotonic variation of x occurs, but the zero is 
attained for T + 00. On the other hand, for any fixed nonzero temperature T ,  the effective 
field increases monotonically with the growth of applied field h and tends to infinity for 
h + 00. 

3. Canonic dependences and the parametric method for their computation 

It must now be obvious that one does not need to specify x from equation (6) in order 
to find the dependence of the anisotropy coefficients in on the magnetization. One needs 
only input the value of J and collect pairs of points for a given value of x E [0, 00) in 
a paramebic sweep with equations (4)-(5). This means that the dependences in@) so 
calculated are valid for the whole class of theories mentioned above. In this sense, they are 
canonic dependences. Until recently, only the canonic curves for i z (m) ,  i d m ) ,  and &(m) 
with J = 00 have been known. Their extensive use [I, 3, 141 is based on the fact that 
a closed-form expression in terms of the (suitably normalized) modified spherical Bessel 
functions &+l,z(Lc-'(m)) with E = 2,4,6, . . . has been found 1151, where L-'(y)  is the 
inverse Langevin function. Taken at face value [16], however, these functions are nothing 
more than combinations involving hyperbolic functions of the type arising when calculating 
the in with the help of the generating function-of Callen and Shtrikman [9] for any finite 
J .  Besides, a closed-form expression for the inverse Langevin function is unknown just as 
B;' for J > 2 Hence, the infinite4 case is no less formal than any J z 4 case. The 
paramehic solution makes this difference between finite and infinite d u e s  of J ignorable, 2: 
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for it operates equally well and easily with any J ,  be it finite or infinite. Apart from 
the seeming simplicity of the infiniteJ result, the point was made that the in with finite 
J ,  when given as functions of magnetization, are practically the same as for the infinite-J 
case. The statement 111 was based on comparison with dependences found by Wolf [17, 181, 
of which, however, only i d m )  for the two values 2 and I of the spin quantum number 
could be an object of comparison as only their analogues for the case considered by Wolf 
had been given 117, 181. However, his calculations concerning local uniaxial distortions 
in cubic symmetry were set up within a framework of computing quantum mechanically 
nonequidistant energy levels and are perturbative and restricted to sufficiently small uniaxial 
couplings and to low temperatures. Besides, two’further objections can be raised. First, 
using automatically the infinite4 results implies, e.g., that one could set up a calculation 
in which a system of magnetic moments of, say, J = 1 is found to possess anisotropy 
coefficients of order four, six, etc. However, as is well known, higher-order anisotropies 
are supported only by sufficiently high values of J .  A further objection is the fact that the 
normalizing factors pn( J ) ,  i.e. the zero-temperature values of the corresponding Stevens 
operators, are quite different for different values of J ,  and much more so for J -+ CO. This 
point has been brought to light in [19]. 

Y Millev and M Fdhnle 

3.1. Canonic dependences for the anisotropy coefficients 

All these remarks serve to clarify that the situation with the canonic dependences is rather 
simple for any value of J once the point of view of the parametric approach is grasped 
and accepted as a working tool. Its output is easy to generate and implement. In figure 1 
we give the first group of canonic dependences, those for the anisotropy coefficients for 
different values of J .  They are valid for  the whole Callen and S h t r i h n  class of theories 
[9]. Besides, in the normalized form of the definition (3) they do not depend in any way on 
the normalization of the spherical harmonics or the Stevens operators [20]. The conjecture 
that the curves with different values~of J lie close to each other is borne out. Note, 
however, that very serious deviations between finite and infinite values of J occur when 
the temperature dependence of anisotropy is computed theoretically. For instance, it has 
been proven within the mean-field approximation that &(T) is a strictly linear function of 
temperature for J + CO in zero applied field (&(T) = 1 - T/T,) ,  while this is by far not 
the case for E*(T) for any finite J [6]. 

3.2. Canonic dependences for the anisotropy constants 

The second group of canonic dependences is related to the anisotropy constants as 
functions of magnetization. The issues involved will be discussed in sufficient detail 
for the uniaxial case under the assumption of negligible in-plane anisotropy, while only 
the salient results will be mentioned for the case of cubic symmetry. It has often 
been remarked that the ‘unusual’, non-monotonic dependences of the anisotropy constants 
of great many materids are presumably due to the effect of higher-order anisotropy. 
This issue requires a closer examination. The best way to proceed is to consider 
the set of anisotropy constants as expressed in terms of the set of the anisotropy 
coefficients. Under the assumptions of the fundamental theory of magnetic anisotropy and 
magnetostriction [l, 21, 221 and throughout the Callen and Shuikman class of theories [9], 
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In 
Figure 1. Canonic dependences for the no"i anisotropy coefficients the set r i 2 . 6 ,  and 
i 6  as functions of mgnelization ( m g e d  in this order from above). In each tullly, the upper 
curve is for I = g, the I O W ~  one is for I = y .  

the following triangular set of relations holds [SI: 

Kp = a,,?,, . 
KP-r bp-l&z~p-~) + b&p 

(10) 
K2 = clk4 f ... + Cp-lt?Z(p-I) f Cpt2p 
KI = d1i2 + d2& + ... + d,,-~Kz~~-l) + dPkzp. 

An extensive discussion about what is the highest anisotropy constant K,, which appears 
and, hence, what is the number p of these relations under various circumstances has been 
giverelsewhere [SI. In any case, for singleion anisotropy due to rare earth atoms (and 
under the assumptions just mentioned), there is no higher constant than K3 [S, 231. Once the 
number of anisotropy constants relevant to the discussion in any given material i s  settled, 
the triangular property of the above relations is seen to come from the fact that a term of 
the form Ki sin" 0 in the phenomenological expansion cannot contain contributions from 
k%Y:(e) with q smaller than i, since this would imply that Ki multiplies also terms of 
lower powers in sine which is impossible by the definition of Ki. The very important point 
we wish to emphasize is that the set of normalized, dimensionless, monotonic functions 
{tzP]. defined on the interval [0, I] and taking on values between [O, I], sets up a basis of 

functions which carry the dependence on magnetization m and, via m, on temperature and 
applied field as well. Hence, the relations (10) should be regarded not so much as expressing 
the otherwise correct fact of mutual interchangeability of constants and coefficients when it 
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comes to the characterization of ,anisotropy in a given system, but as relations expressing a 
set of -own functions (the KP) as linear combinations of a finite basis of functions (the 
iZ,J which can be easily computed for a whole class of untrivial theories by implementing 
the parametric method as explained earlier in  this paper. Now then ‘higher-order anisotropy’ 
means that one must consider p 1 constants in the phenomenological expansion. The 
‘must’ ‘may originate from the theoretical side (for some firmly established reasons, one is 
set from the beginning to consider a basis of p functions in) or, more reasonably, it may 
derive from practical considerations. One namely considers the top relation in (10) and notes 
that, since i~,, is dimensionless and normalized so as to be unity at T = 0, the coefficient 
U,, is identical with K,” = K,,(T = 0). If there is experimental information that the latter 
quantity is small beyond concern, one may cut down the set of constants by one. In other 
words, arguments of smallness (IS applied to the intrinsic (T = 0) anisotropy may happen to 
be applicable. Once the number p of constants to be considered has been decided upon, one 
notes that the coefficients in the linear combinations (2) are expressible via p independent 
quantities. It seems especially useful and promising to take the zero-temperature values 
(K ,” )  as p independent quantities [SI. The number can be reduced by one to p - 1 by 
expressing all anisotropy constants in units of any one of them and it is natural to choose 
the unit as KP ( c q  has to be exercised in tracking down the effect of its sign, however). 

Y Millev and M Fiihnle 

4. Qpes  of canonic curve in the two-constant case 

To illustrate these ideas, we choose the simplest case involving higher-order anisotropy, 
the one with p = 2. In the following, we find it convenient to use the normalization for 
the spherical harmonics as given in [l] and 121. This is important if connection is to be 
established with ab inirio calculations where, typically, the crystal field parameters {A:} 
entering the [B;}  are being calculated. Note, however, that neither the product p.(J)B,OY,O 
entering equation (2) nor our results concerning the anisotropy constants depend on the 
normalization chosen. The relevant relations in the two-parameter (p .=  2) case are, in units 
of KP, 

r& K z  - =  
KP 

where we have introduced the ratio r K i / K y .  Note that the use of a two-parameter 
representation of anisotropy is in fact exact for quantum numbers J = 2 and J = 512, 
while for cases with J > 512 it might still be a reasonable approximation. This will be the 
case, for instance, with single-ion anisotropy coming from rare eaah atoms with J > 512 
in materials for which K! is negligibly small 181. 

To summarize the information on the second group of canonic curves, one generates the 
dependence of the anisotropy constants on magnetization by implementing the parametric 
method to equations (11) with insertion of the relevant value of the ratio r .  This means that,’ 
so far as the constants in the two-constant approximation are concerned, one has to do with a 
one-parameter family of canonic curves, unlike the totally determined basis functions K,,(m). 
Still, for a given r ,  the curves are valid for the whole class of theories as defined earlier. In 
figure 2(a, b) we give two such families of curves for J = f and J = 4, respectively. In the 
latter case, the curve with r = -3 corresponds tentatively to the experimental ratio K t / K f  
measured in FezNdlzB. Only the dependences K I  (m) are presented, as by equation (1 1) 
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Figure 2. Cvlonic d e p d e n c e s  for 
the misotropy “ m i  K l ( m ) / K p  in 
the nvosonaan~ uniaxid case for a 
given intrinsic ratio r = K ; J , K ~ .  
The thick CUNM are the borderlinrs 
berwccn &e three generic types of 
dcpendenee and m o b h e d  with I = 

and I = -3  (upper and lower thick 
CUNCS. r e s p m e l y ) .  Representative 
!dues of r hahe been taken IO 
illusvlte the dependence inside a c h  
of Ihc generic groups of behaviour 
(rhin lines). (a) J = 1:  imm above 
r = l . f . - f . - $ ;  (b) I = 5 :  from 
abovcr= I . t . - j . - t . - 3 .  

m 
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the dependence Kdm)  is given by S ( m )  up to scale and sign which are dictated by r. One 
can see that the expectation for a richer variety of dependences for the constants &(m), 
as opposed to the 'cool' monotonicity of the coefficients in (m)  (figure I), has been met. 
Three types of dependence are easily distinguished in figure 2; they are separated by thick 
borderlines in the same figure. The origin of the variety observed for K, (m) can also he 
easily understood. This is simply the extra basis function i ~ ( m )  contributing to Kl(m), but 
not to Kz(m). Two general features will certainly persist for cases with more constants 
included. First, in principle, one will always observe the most peculiar behaviour with the 
anisotropy constant of lowest order ( K l ) ,  since Kl(m)  is always the result of superposing 
the greatest number of basis functions tn (m) ,  except for some ratios which nullify some 
factor in the linear combination (see below for an example). Second, for sufficiently high 
temperatures (sufficiently small magnetization) it is the first anisotropy constant that will 
dominate, regardless of what the p - 1 ratios rj = Kj(T = O)/Kg (T = 0) ( j  = 2,3, . . . , p )  
are. This is easily derivable from the asymptotic expansions of &(m)  for T + T, (m + 0)  
[8] and can be seen in the canonic plots in figure 1. 

Consider now the types of curve for Kl(m) /Ky  given in figure 2. Generically, they 
are of (i) a non-monotonic type with a maximum (above the upper borderline), (ii) a 
monotonic type (in the domain between the borderlines), (iii) a non-monotonic type with a 
negative minimum and a zero point at some inner point ms (below the lower borderline). 
Mathematically, the first and third types are equally peculiar. They both have a local 
extremum at an intemal point of the interval m E [O, I]. physically, the third type is much 
more intriguing, since it involves a change of sign of KI, Imposing the condition KI = 0, 
one gets 

Y Millev and M F a h l e  

The inequality could be met for either r > 0 or r c -2 The first possibility (r > 0) is 
ruled out by counterexample (take, e.g., r = 1 > 0, substitute in equation (ll), and mind 
that E2 is strictly greater than everywhere inside m E (0.1) (figure 1)). So the lower 
borderline corresponds to a critical value of r = -f. 

This simple argument has the deficiency to be a necessary condition only and the 
sufficiency is in fact proven hy the parametric method (cf. figure 2). However, an exhaustive 
argument leading to the analytical determination of both borderlines can be set up for the 
two-constant anisotropy case we are now considering. It is based on examining the signs 
of the first derivatives of the basis functions in at the ends of the interval m E [O, 11 with 
the help of the explicit asymptotic expressions for these functions. The method has been 
employed in a study of the temperature dependence of the anisotropy constants in the mean- 
field approximation and has been given in detail elsewhere [PI. One finds that the family 
of canonic curves for Kl(m) splits into tbree generic groups specified as follows: 

8'. 

group 1: r > 1 
group 2: - f < r < 

(14) 

(15) 
group 3: r < -1 8 '  (16) 

The borderlines are thus to be found for r = 1 8 and r = -f. By equation (ll), at r = 1, 
Kl(m)IKF = $%.(m) - $4(m), while at r = -$ one finds simply KI(m) /Ky  = 4 ( m )  
and Kz(m) /Ko  - -&(m), i.e., &(m) - K l ( m )  - i4(m). In this latter case, we have an 
example of a particular value of the ratio r for which both linear superpositions (cf. equation 
(2) for K I  and Kz a e  of 'equal length' (here, simply proportional to i d ,  while i z  does not 

1 7  
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show up at all). Accordingly, the lower borderline in figure 2 is just the plot of the hasis 
function i&(m). 

The classification of the possible types of dependence of K ,  as a function of 
magnetization is the same as found in the analysis of the corresponding temperature 
behaviour in the mean-field approximation. As it stands here. this classification is valid 
for the whole class of theories envisaged [9], since here it is found when considering the 
relevant basis functions as functions of magnetization and it was already demonstrated 
above that these are valid for the whole class. This result is in itself a generalization in 
comparison with the mean-field treatment of the.temperature dependence [SI. Moreover, 
the temperature behaviour of the first anisotropy constant in the two-constant anisotropy 
case will definitely obey the classification not only for the mean-field case, but for the 
whole Callen and Shtrikman class. This is essentially due to the monotonic behaviour of 
magnetiiion with temperature and it is the invariance of the sign of dm/dT < 0 that 
matters when extending the above classification to any particular temperature dependence 
within the class. 

For the sake of completeness, we mention in passing that the same type of analysis 
leads in the two-constant cubic case to the subdivision of the family of canonic curves for 
Kfubic(n) into three analogous generic types, which are realized for r > 10, -11 < r < 10, 
and r < -11, respectively. One~sees that there is a substantial quantitative difference by 
an order of magnitude, so far as the values of r delineating the analogous regimes are 
concerned. This makes the possibility for an experimental realization of the non-monotonic 
types of behaviour rather unrealistic. Besides, in cubic materials for any given anisotlopy 
constant KYbic the linear combinations are one term shorter and, consequently, the variation 
opportunities are significantly reduced. Note, however, that if one considers anisohopy of 
singleion origin due to rare earth ions sitting on sites of cubic symmetry, the classification 
presented here for the cubic case is exhaustive, since no basis functions i , (m)  with n >. 6 
are allowed [23], while n must be greater than two by cubic symmetry; hence, one is left 
with just two basis functions, those with indices four a id  six. 

5. Extension Of the method to magnetostriction of single-ion origin 

The systematization of the variation of anisotropy constants with magnetization m is 
immediately applicable to the analysis of the variation of magnetostriction of single-ion 
origin with magnetization. The detailed expressions for the magnetostriction coefficients 
are rather complicated both in uniaxial and in cubic symmetry [l, 21, 221, since group 
theoretical classification arguments are involved and quite a number of magnetoelastic 
coupling constants as well as elastic constants have to be taken into consideration. However, 
there is almost no hope that all this detailed information could be available with any reliable 
accuracy in any given experimental case. That is why one resorts to folding all unknown 
information into free fitting parameters which are then determined from the available data 
on the variation of magnetostriction with temperature or magnetization. When this course 
of action is adopted, the problem is seen to be immediately reduced to the characterization 
of the functions {hi } (the independent components of the magnetostriction tensor) as linear 
combinations of several other functions canying the magnetization dependence. To be 
specific, we shall not examine at this time contributions to magnetostriction beyond the 
single-ion ones; furthermore, the latter will be treated within the Callen and.@allen theory 
[I] which is valid for the whole Callen and Shtrikman class [9]. To be able to apply the 
results from the analysis of magnetic anisotropy as given above, we keep the contributions 
from &(m) and C&n) or from i 4 ( m ) ~  and &(m) in the case of uniaxial or cubic symmetry, 
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respectively. All this amounts, in the first place, to writing the independent components 

Y Millev and M Fahle  

k ( m )  as 

(17) 
where c: and ci incorporate the unknown detailed information about the magnitude of 
the magnetoelastic coupling and the elastic constan& involved, but do not depend on 
magnetization, while the number z appearing in the subscripts of the basis functions is 
one or two for the uniaxial or cubic cases, respectively. Now that the basis of functions 
has been set up, it is not essential that the coeflicients in the latter linear combination 
have not some deeper meaning like the meaning of transformation coefficients between 
equivalent representations in the case of magnetic anisotropy which we considered first. 
Using normalization against the zero-temperature value of magnetostriction in order to 
reduce the number of coefficients by one as before, one finds 

A&) = d&&) + c h Z + & n )  

where use was made of the normalization of the in (in = 1 for m = 1, i.e., for T = 0). 
The conclusions about the possible types of behaviour of the respective magnetostrictive 
constant due to singleion anisotropy derive immediately from the analysis, already done for 
the anisotropy constants. Namely, three types of variation with magnetization (and, hence, 
with temperature) are possible and these can be defined for the whole class of theories under 
consideration. 

Now one finds easily the domains of the three generic groups of canonic curves for 
magnetostriction. In uniaxial symmetry, one finds 

group 1: ai > 1017 (19) 
group 2 0 < ai <, 10/7 (20) 
group 3: ai <o .  (21) 

The canonic curves for the three types look like those for the anisotropy constans in the 
three corresponding classes (cf. figure 2). The 'family parameter' for each component It 
is now ai and the formal correspondence with anisotropy is established via the relation 
ai = 1 + -r 7 '  

8 

In cubic symmetry, 

group 1: d > LL I1 

group 2 0 <ai Q 3 
group 3: ai < 0. (24) 

The correspondence with the treatment of anisotropy is established via ai = 1 + k r .  
In both cases of uniaxial and cubic symmetry the lower borderline (the one between 

the monotonic type of variation and the type with a change of sign) occurs with ai = 0, 
whereby it is plain to see that this borderline is simply either &(m) in the uniaxial case or 
Kg(m) in the cubic case. Note that, just like with the anisotropy, the borderlines between the 
different generic regimes of variation do not depend on the value of J ,  although the basis 
functions do. 

There are many ways in which the above information may be used in the analysis of 
magnetostriction. By way of example from the experimental side, provided that only the fype 
of variation of magnetostriction of single-ion origin has been determined and even without 
attempting a one-parameter fit to determine the value of ui, one may use the relevant 
inequality from among equations (19-21) or equations (22-24) as an integral (overall) 
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restriction on the combinations of magnetoelastic and elastic coefficients which enter the 
parameter ai explicitly. On the other hand, due to the smallness of the magnetoelastic 
coefficients and the existence of fundamental restrictions on the values of the elastic 
coefficients stemming from requirements of thermodynamic elastic stability [%I, it may turn 
out to be possible to rule out some of the three predicted types or to introduce additional 
restrictions under which a given type may exist. 

There is, however, a much more important issue of major practical interest which is 
involved in the analysis of magnetostriction of singleion origin. It concerns the possibility 
for, and the explanation of the origin of, near-zero saturation magnetostriction As 0 
in a series of technologically important soft amorphous CO-rich or Fe-rich ferromagnetic 
alloys [22, 25-28]. There arose the question of whether systems of this type are really 
nonmagnetostrictive on a local scale or whether they~exhibit a local magnetostrictive effect 
which averages out on a macroscopic scale. These structure-related possibilities were 
denoted as type 1 and type 2 magnetostrictive alloys. To solve these issues, a polycrystalline 
model of amorphous ferromagnets has been developed [27-301 whereby it is assumed that 
the amorphous alloys are composed of very small structural units (‘gains’) which exhibit 
similar symmetry and chemistry, but are randomly oriented. In a locally assigned frame 
of reference adapted to~the local symmetry exhibited, the magnetostrictive behaviour of an 
isolated & i n  may be described by the independent components { A i )  of the magnetostriction 
tensor, &d it is assumed that the temperature dependence of Ai in these grains is determined 
by two functions,  each of which depends monotonically~on m: 

(3) 
Taking into account the elastic interactions between the distinct grains, it has been shown 
[28-301 that the macroscopic magnetostriction constant AS of the alloy may be represented 
as a h e a r  combination of the (Ai(m)), i.e., 

(26) 
A system with AS @(To)) = 0 at some temperature TO may then arise if all Ai (m(T0)) are 
zero (type 1) or if the linear combination L [Ai(m(To))] is zero (type 2)  and it has been 
aigued that type 1 materials are unlikely to occur. So far, it h e  always been assumed in the 
literature that the two relevant basis functions f(m) and g(m) are those describing the lowest 
single-ion contribution and the two-ion contribution to magnetic anisotropy 122, 25, 261, 
i.e., that AS = 0 comes about as a result of the competition between two rather different 
sources of magnetic anisotropy and, hence, magnetostriction. In contrast, one can also 
assume that the coefficients ai and bi in equation (25) are given by the coefficients c: 
and ci of equation (17), i.e., the two relevant basis functions are related to the lowest and 
second-lowest singleion anisotropy. It has been demonstrated in this section that a change 
of sign of Ai(m) may indeed be obtained if the related parameters ai from equation (18) are 
within a certain range. One can then obtain a zero-magnetostrictive alloy of type 1 if all Ai 
vanish simultaneously for some particular value of magnetization and this is very unlikely. 
On the other hand, the macroscopic magnetostriction constant hs(m) is given by 

and, hence, 

Ai = ~ i f ( m )  + big(m). 

. 
Adm) L [Ai(m)l = L[ailf(m) + L[bilg(m). 

Adm) = U c f I M m )  + W~Itz( ,+~)(m)  (27) 

~. 
A zero-magnetostrictive alloy of type 2 is now seen to result whenever the parameter 
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falls into the range specified as group 3 in equations (21) and (24) for uniaxial and cubic 
local symmetry, respectively. We have thus demonstrated that a vanishing macroscopic 
magnetostriction in an amorphous alloy may arise from the competition between single-ion 
anisotropies of different orders, even if there is no two-ion contribution. In certain cases, 
it might be important for the analysis of experimental data to consider simultaneously both 
sources of compensation effects, namely, higher-order singleion anisotropy and two-ion 
contributions (see also the end of the next section). 

6. On the canonic dependences for anisotropy constants in higher-order (p > 2) cases 

There are certainly further improvements which could be done to elaborate this type of 
rather general analysis. Two of these may be mentioned here as being in the phase of active 
exploration. 

The first one is the extension of the analysis of single-ion anisotropy to characterize 
exhaustively the effect of extending the basis of functions in by one for the uniaxial case. 
The possible types of canonic dependence for Kl(m)/Kf will certainly be more numerous 
as now the corresponding linear combination is one function longer and, more importantly, 
depends on an additional parameter K!/Ky.  That is to say, now a two-parametric manifold 
has to be explored systematically to set up a full-scale classification of the kind proposed 
above. Besides, with a basis of three functions i,, one must expect interesting behaviour for 
the second anisotropy constant K&) as well. Moreover, in view of the present analysis, the 
variation of  Kz(m) in this more involved case may already now be considered as exhaustively 
characterized. Indeed, in the three-parameter case Kz(m)/Ky = dl&(m) + (1 - dl)i6(m), 
where dl depends on a single ratio only [2]. Using the above method and the explicit 
formulae for transforming between constants and coefficients in the three-parameter case, 
one can easily classify the values of the relevant ratio for which three (!) different types of 
behaviour of K2 occur. These rather general predictions certainly extend the understanding 
as to what might be expected from the variation of the second anisotropy constant in 
uniaxial materials whose anisotropy is largely due to single-ion contributions coming from 
rare earth ions, for instance. It might be expected that indeed non-monotonic variations with 
magnetization (and, hence, with temperature) could be detected for the second anisotropy 
constant, a phenomenon which has not been reported to date. This is a challenge to the 
experimental work in the field of anisotropy. 

To give a feeling of what new features might be expected to arise in cases when 
three basis functions are involved, in figure 3(a, b) we give canonic plots of all the three 
anisotropy constants for some arbitrary values of the intrinsic ratios rzr I r = K:/KP 
and r31 = K!/Ky .  These ratios are of paramount importance for the variation of the 
constants upon changes of magnetization or temperature, respectively. (In fact, it would 
not be exaggerated to claim that the p - 1 dimensionless parameters are constitutional 
parameters for the single-ion anisotropy in a given system. It has been demonstrated [8], 
for instance, that the values of these parameters determine unambiguously the temperature 
evolution of anisotropy in any given system and corrcsponding anisotropy flow diagrams 
have been given which are valid for the whole Callen and Shtrikman class [9].) 

Returning to figure 3(a), one may observe the considerable enhancement of the lower- 
order anisotropy constants K I  and K2 which is due to the inclusion of the thiid-order basis 
function i 6 .  In the presented case all three intrinsic constants K: ( p  = 1,2.3) are equal 
(i.e., r21 = r31 = 1). An important practical implication is that, should it be possible 
to synthesize such materials or detect such a property in already existing ones, the first 
anisotropy constant would be enhanced and its extremum would be pushed towards higher 

Y Millev and M Fahnle 
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Figure 3. Illustrative canonic depen- 
dences for the first three anisotropy con- 
stants (in arbitmy units) as functions of 
magnerization (J  = 4). me- thichiclmess 
of lines decreases when going from KI 
to Ks. (a) Enhaneemen1 of KI and K2 
due to the higher-order c~oefficienm in 
the threeconstant case. Here, signs and 
magnitudes of the inirinsic anisotropy 
cnnstan~ are taken as equal (KP = 
K: = K?). (b) Emergence of new fea- 
t u r e ~  in the canonic dependences in the 
fhreL-parameter case (KY = -K$ = 
K!). Kz(m) exhibits a change of sign 
and a related maximum. while KI devel- 
ops an additional inflexion point when 
computed as a function of temperature 
(Kl(T) is not given, since it is not 
canonic). 
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temperatures which is an effect of direct practical relevance. In figure 3@), we have chosen 
K ,  - - (i.e., rzl = -r31 = -1). Interestingly, but not unexpectedly in view of 
the present analysis, KZ(m) is of the non-monotonic type with a zero point The canonic 
curve K l ( m )  is monotonic, but it is to be noted that it behaves more peculiarly than in 
any of the canonic cases in the two-constant anisotropy analysis. We have proceeded to 
calculate the temperature dependence of K1 within the mean-field approximation with these 
particular ratios and have found that, indeed, it exhibits a new feature, namely, it changes its 
curvature three times inside the interval of variation (two inflexion points), whereas only a 
single inflexion point is possible in the monotonic regime between the borderlines in figure 
2 in the two-constant anisotropy case. This observation, though made for a ‘non-canonic’ 
dependence (the temperature dependence which is specific for each of the member theories 
of the Callen and Shtrikman class), implies that the characterization of the generic types 
has to be refined in the case when more than two anisotropy constants are involved. 

The second advance which can be carried through successfully is the adequate treatment 
of mo-ion anisotropy. It can be mentioned at this stage that a parametric method is 
being developed for this case as well; among other thiigs, it makes known analytic results 
concerning two-ion anisotropy easily applicable. 

Y Miiiev and M Fahnle 
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7. Summary 

We have emphasized the role played by the set of fundamental anisotropy coefficients E,, 
in the description of magnetic anisotropy and magnetostriction of single-ion origin. A 
powerful parametric method allows one to compute the anisotropy coefficients as functions 
of magnetization. The obtained dependences are valid, and we have correspondingly called 
them canonic, for a whole class of untrivial theories under the assumptions of the Callen and 
Callen theory of anisotropy and magnetostriction. Expressing the anisotropy constunts Ki as 
linear combinations of the basis functions ri, via the general relations for the transformation 
between the two equivalent descriptions of anisotropy energy, one finds the families of 
canonic curves for the constants as functions of magnetization. The different families are 
determined by the p - I intrinsic ratios KF/KF (i = 2,3,  . . . , p ) .  where p is the number 
of anisotropy constants included in the corresponding anisotropy free energy. It is thus 
of paramount importance that the intrinsic (constitutional) anisotropies are experimentally 
measured for each particular case of interest. For the class of theories discussed here 
and with respect to the variation of anisotropy with magnetization or temperature, their 
knowledge is as important as the assignment of initial conditions in classical mechanics, for 
instance. The canonic dependences Ki(m) provide the framework for the determination of 
the temperature or field dependences by inserting the experinentally measured magnetization 
as a function of temperature or field, respectively, as has indeed been the practice for 
analysing anisotropy and magnetostriction in rather different experimental situations. 

Three types of canonic 
dependence for the anisotropy comfunts have been found in both uniaxial and cubic 
symmetry. Each particular canonic dependence is valid for the whole class of theories 
for a given value of the intrinsic ratio r = K!/KY. A straightforward extension of the 
method allowed us to predict three types of variation for the magnetostriction of singleion 
origin in the two-constant case. By the same token, one finds that in uniaxial symmetry and 
within the three-constant analysis three generic types of variation are possible for the second 
anisotropy constant K2 as a function of magnetization or temperature. The way to analyse 
systematically the three-constant case has been discussed and some further peculiarities 
(apart from the predictions for the behaviour of K2) have been illustrated. 

The two-constant case has been completely specified. 



Canonic dependences for anisotropy 6923 

We have furthermore suggested that the results of the analysis of the case with two 
basis functions {K,) are applicable as an alternative explanation~for the occurrence of near- 
zero magnetostriction in CO- ana Fe-rich amorphous alloys. By now, the compensation has 
always been viewed as the outcome of counteracting single-ion and two-ion contributions. 
In contrast, the mechanism suggested in this paper is the competition between singleion 
anisotropies of different orders. A necessary step for the analysis~from the theoretical side is 
the development of a parametric method for the computation of the dependence of the two- 
ion anisotropy on magnetization so that a quantitative resolution of the described alternative 
would be possible. Moreover, such an advance may provide for the simultaneous account of 
both types of anisotropy, thus transforming the alternative intoan interpolation between the 
oneion and two-ion mechanisms with different weights. Since physical intuition and some 
earlier studies indicate that the dependence of the two-ion contributions on magnetization 
is also monotonic (311, one is once again, as with the case o f ~ p  = 3 for the magnetic 
anisotropy energy above, led to consider the effect of superposing three different monotonic 
functions, namely, those for the lowest and next-lowest singleion anisotropy plus the one 
describing the two-ion contribution. Unluckily, the latter function could hardly be computed 
effectively for the whole class, envisaged in this paper, which means that foss of generality 
seems unavoidable. The testing ground for such developments would be the degree of 
accuracy of fitting to existing experimental measurements on Co-rich zero-magnetostrictive 
alloys ([22, 25-30] and references therein). The issue deserves further elucidation. 
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